Technical Guidelines
for Digital Cultural Content Creation
Programmes

Version 1.0: Revised 08 April 2004

This document has been developed on behalf of the Minerva Project
by UKOLN, University of Bath, in association with MLA The Council
for Museums, Libraries & Archives
Technical Guidelines for Digital Cultural Content Creation Programmes
Version 1.0: Revised 08 April 2004

General co-ordination
Rossella Caffo (Minerva Project Manager),
Antonella Fresa (Minerva Technical Coordinator)

Editors
Pete Johnston (UKOLN, UK) and David Dawson (MLA, UK)

European Editorial Committee
Eelco Bruinsma, Consultant, NL
Rob Davies, MDR Partners / PULMAN Project, UK
David Dawson, MLA, UK
Bert Degenhard Drenth, Adlib Information Systems / EMII-DCF Project, NL
Giuliana De Francesco, Ministero per i beni e le attività culturali, IT
Muriel Foulonneau, Relais Club Europe / EMII-DCF Project, FR
Gordon McKenna, mda / EMII-DCF project, UK
Paul Miller, UKOLN, UK
Maureen Potter, ERPANET Project, NL
Jos Taekema, Digital Erfgoed Nederland, NL
Chris Turner, MLA, UK

Secretariat
Marzia Piccininno (Ministero per i beni e le attività culturali, Italy)

Web version
Maria Teresa Natale and Andrea Tempera
http://www.minervaeurope.org/publications/technicalguidelines.htm

Design
due_pavese

© 2004-2005 Minerva Project
Acknowledgements

This document is based primarily on four sources.

- the NOF-digitise Technical Standards and Guidelines (Version 5, February 2003), that were developed on behalf of the UK New Opportunities Fund (NOF), by UKOLN, University of Bath, in association with Resource: The Council for Museums, Archives & Libraries.
- additional information provided to NOF-digitise projects in support of the Standards and Guidelines by the NOF-digitise Technical Advisory Service, operated for NOF by UKOLN and the Arts and Humanities Data Service (AHDS), in the form of the programme manual, briefing papers and FAQs.
- the Framework Report (September 2003), published by the European Museums’ Information Institute – Distributed Content Framework (EMII-DCF) project, particularly the Data Capture Model in Chapter 16.
- the Good Practice Handbook (Version 1.2, November 2003), developed by the Minerva project (Working Group 6).

NOF-digitise Technical Standards and Guidelines
<http://www.mla.gov.uk/action/pn/digi_tech_standards.asp>

NOF-digitise Technical Advisory Service Programme Manual
<http://www.ukoln.ac.uk/nof/support/manual/>

NOF-digitise Technical Advisory Service FAQ
<http://www.ukoln.ac.uk/nof/support/help/faqs/>

EMII-DCF Framework Report

Minerva Working Group 6: Good Practice Handbook
<http://www.minervaeurope.org/publications/goodhand.htm>

It also draws on a number of other sources:

The Institute of Museum and Library Services’ Framework of Guidance for Building Good Digital Collections
<http://www.imls.gov/pubs/forumframework.htm>

The NINCH Guide to Good Practice in the Digital Representation and Management of Cultural Heritage Materials
<http://www.ninch.org/programs/practice/>

Research Libraries Group Cultural Materials Initiative: Recommendations for Digitizing for RLG Cultural Materials
Research Libraries Group Cultural Materials Initiative: Description Guidelines

Canadian Heritage Standards and Guidelines for Digitization Projects

Working with the Distributed National Electronic Resource (DNER): Standards and Guidelines to Build a National Resource
<http://www.jisc.ac.uk/index.cfm?name=projman_standards>

JISC Information Environment Architecture Standards Framework
<http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/standards/>

The Public Libraries Managing Advanced Networks (PULMAN) Guidelines
<http://www.pulmanweb.org/DGMs/DGMs.htm>

UKOLN is funded by the Museums, Libraries and Archives Council, the Joint Information Systems Committee (JISC) of the Higher and Further Education Funding Councils, as well as by project funding from the JISC and the European Union. UKOLN also receives support from the University of Bath where it is based.
1 Introduction

1.1 The purpose of this document 11
1.2 The role of technical standards 12
1.3 The benefits of deploying standards 13
1.4 The life cycle approach 14
1.5 Requirement levels 14

2 Preparation for digitisation 17

2.1 Hardware 17
2.2 Software 17
2.3 Environment 18

3 Handling of originals 19

3.1 Appropriate movement and manipulation of original material 19
3.2 Staff training 19

4 The digitisation process 21

5 Storage and management of the digital master material 23

5.1 File formats 24
 Text capture and storage 24
 Character encoding 24
 Document formats 25
 Still image capture and storage 26
 Raster images 27
 Vector images 28
 Video capture and storage 29
 Audio capture and storage 29

5.2 Media choices 30
5.3 Preservation strategies 30

6 Metadata creation/capture 33

6.1 The scope of the metadata 33
6.2 Appropriate standards 33
 Descriptive metadata 34
 Administrative metadata 36
 Preservation metadata 36
 Structural metadata 37
 Collection-level description 38
 Terminology standards 39

7 Publication 41

7.1 Processing for delivery 41
Delivery of text 41
Character encoding 41
Document formats 42
Delivery of still images 42
Photographic images 42
Graphic non-vector images 43
Graphic vector images 43
Delivery of video 43
Downloading 43
Streaming 43
Delivery of audio 43
Downloading 43
Streaming 43
Identification 44

7.2 3D and virtual reality issues 44
7.3 Geographic information systems 45
7.4 Web sites 46
Accessibility 47
Security 48
Authenticity 48
User authentication 49
Performance indicators 49

8 Disclosure of resources 51
8.1 Metadata harvesting 52
8.2 Distributed searching 52
8.3 Alerting 53
8.4 Web services 54
8.5 RDF and Web ontologies 54

9 Re-use and re-purposing 57
9.1 Learning resource creation 57

10 Intellectual property rights and copyright 59
10.1 Identifying, recording and managing intellectual property rights 60
10.2 Safeguarding intellectual property rights 60
Creative Commons 61
E-commerce 61
Watermarking and fingerprinting 62

11 Summary 63
11.1 Maintenance 63
1. Introduction

Throughout Europe, international, national, regional and local initiatives are investing significant public and private sector funding to enable access to a range of cultural heritage resources through digital channels. The motivations and drivers for these initiatives may vary widely: they may encompass different types of resources, address different audiences and aim to contribute to distinct social and economic objectives. However, the various agencies supporting digitisation programmes typically share a common concern of seeking to maximise the value of their grant awards, by requiring that the content produced should be as widely useful, portable and durable as possible. These qualities are encapsulated within the notion that resources (and the mechanisms through which resources are accessed) should be ‘interoperable’.

The key to such ‘interoperability’ is to ensure consistency of approach to the creation, management and delivery of digital resources through the effective use of standards, the rules and guidelines that codify good practice. Digitisation programmes already recognise the value of standards, and the adoption of a shared set of technical standards and guidelines is often a first step in seeking to ensure conformity within a programme. This document seeks to provide some guidelines for the use of standards - primarily technical standards. It is intended primarily as a resource for policy-makers, and for those implementing funding programmes for the creation of digital cultural content.

1.1 The purpose of this document

It should be emphasised from the outset that it is not the intention of this document to impose a single prescriptive set of requirements to which all projects must conform. It would be impossible to create a single document that captured all the context-specific requirements of many different programmes, and it is recognised that different programmes will take different approaches to conformance with guidelines. Rather, this document seeks to identify those areas in which there is already commonality of approach and to provide a core around which context-specific requirements might be built. In this sense the scope and emphasis is similar to that of the EMII-DCF Data Capture
1. Introduction

Model, and indeed several of the recommendations in this document are based directly on those presented in that document.

As noted in that document, the usage of these guidelines cannot guarantee ‘interoperability’; the precise requirements for usefulness, portability and durability of digital resources will vary from programme to programme, and the form in which standards are deployed by individual projects will reflect those requirements. Further, while the guidelines provided by this document are intended to be generally applicable, each programme will operate within a context where projects are required to conform to the constraints and standards determined by many parties (institutional, programme-wide, sectoral, regional, national, international). For example, public sector funded programmes may fall within the scope of standards mandated by national governments, or it may be desirable to share data with services themselves operating within a published standards framework.

Further, even within the lifetime of a programme, the technological environment changes and standards evolve. Programmes should maintain awareness of all ongoing standards developments relevant to their operating context. It is important that programmes also provide additional support for projects in the form of an advisory service that can offer guidance on the interpretation and implementation of standards and guidelines, and that ensures that the recommendations in those standards and guidelines are updated to reflect significant developments.

1.2 The role of technical standards

The EMII-DCF Framework Report highlights the definition of a standard used by the British Standards Institution (BSI):

A standard is a published specification that establishes a common language, and contains a technical specification or other precise criteria and is designed to be used consistently, as a rule, a guideline, or a definition. Standards are applied to many materials, products, methods and services. They help to make life simpler, and increase the reliability and the effectiveness of many goods and services we use.

The appropriate use of standards in digitisation can deliver the consistency that makes interoperability possible. A high level of consistency across the digital resources made available by multiple providers means that a tool or service operating across those resources needs to handle only a limited number of clearly specified formats, interfaces and protocols. In contrast, an ever-increasing number of different formats and protocols would make such development complex, costly and at best unreliable, if not impossible. In addition, the process through which standards themselves are developed means that they capture good practice based on past experience and enforce rigour in current practice.

Standards are often defined as either
de jure – formally recognized by a body responsible for setting and disseminating standards, developed usually through the common consent of a number of interested parties. An example is a standard such as the TCP/IP set of protocols, maintained by the Internet Engineering Task Force (IETF).

• de facto – not formally recognized by a standards body but nevertheless widely used, and recognized as a standard by its users. An example is a file format used by a software product that has a dominant or large share of the market in a particular area, such as the Adobe Portable Document Format (PDF).

A further consideration is the “open-ness” of a standard. This can refer to a number of characteristics of a standard, and the EMII-DCF Framework Report highlights three aspects of primary interest to the user of a standard:

• open access (to the standard itself and to documents produced during its development)
• open use (implementing the standard incurs no or little cost for IPR, through licensing, for example)
• ongoing support driven by requirements of the user not the interests of the standard provider.

Taking the scenario above, since the specifications of the formats, interfaces and protocols used by resource providers are openly available, multiple developers can develop similar tools and services and dependency on a single tool or platform can be avoided.

Generally, the formal processes associated with the development of de jure standards are regarded as ensuring that such standards are genuinely “open”. In these guidelines, preference is given to open standards, but in some cases industry or de facto standards are also considered.

1.3 The benefits of deploying standards

Important areas for consideration include:

• Interoperability. It is important that content can be accessed seamlessly by users, across projects and across different funding programmes. It should be possible to discover and interact with content in consistent ways, to use content easily without specialist tools, and to manage it effectively.
• Accessibility. It is important that materials are as accessible as possible and are made publicly available using open standards and non-proprietary formats. If material is to be a widely useful resource it will be necessary to consider support for multiple language communities and ensure accessibility for citizens with a range of disabilities.
• Preservation. It is important to secure the long-term future of materials, so that the benefit of the investment is maximised, and the cultural record is maintained in its historical continuity and media diversity.
• Security. In a network age it is important that the identity of content and projects (and, where required, of users) is established; that intellectual property rights and privacy are protected; and that the integrity
1. Introduction

and authenticity of resources can be determined.

Failure to address these areas effectively may have serious consequences, resulting in the waste of resources by different parties:

• **Users - the citizen, the learner, the child.** They will waste time and effort as they cannot readily find or use what is most appropriate to their needs, because it is not described adequately, or it is delivered in a particular way, or it requires specialist tools to exploit, or it was not captured in a usable form.

• **Information providers and managers.** Their investment may be redundant and wasted as their resources fail to release their value in use, as their products reach a part only of the relevant audience, as they invest in non-standard or outmoded practices.

• **Funding agencies.** They have to pay for redundant, fragmented effort, for the unnecessary repetition of learning processes, for projects that operate less efficiently than they should and deploy techniques that are less than optimal, for content that fails to meet user needs or does not meet market requirements.

• **Creators, authors.** Their legacy to the future may be lost.

1.4 The life cycle approach

This structure of this document reflects a ‘life cycle’ approach to the digitisation process, and (with some modifications) parallels the structure of the Good Practice Handbook developed within Work Package 6 of the Minerva project.

The document is divided into the following main sections, each reflecting a stage in that life cycle. In practice, there are relationships and dependencies between activities within these different stages and indeed some of the stages may not be strictly sequential.

1. Preparation for digitisation
2. Handling of originals
3. The digitisation process
4. Storage and preservation of the digital master material
5. Metadata capture
6. Publication
7. Disclosure
8. Reuse and re-purposing
9. Intellectual property and copyright

1.5 Requirement levels

The approaches taken to conformance to standards and guidelines vary between programmes, along a spectrum from encouraging the adoption of good practice to mandating conformance to standards as a condition of grant award. Typically the standards and guidelines adopted by programmes encompass different levels of requirement, and it is possible to distinguish between:

• **Requirements:** Standards that are widely accepted and already in current use. Projects must implement standards that are identified as requirements.

• **Guidance** that represents good practice but for which there may be reasons not to treat it as an absolute requirement, for example, because those standards are still in development. Projects should maintain and demonstrate awareness of these stan-
standards and their potential applications.

The distinction between requirements and guidance is typically made within the context of a particular programme and the intention here is to provide a foundation document for use within many different programmes.

Within the context of the standards and guidelines for a specific programme, however, the authors of guidelines for the use of technical standards should distinguish clearly between requirements (if any) and guidance.

Further, in standards documents, the key words ‘must, should and may’ when printed in bold text are used to convey precise meanings about requirement levels:

- **Must**: This word indicates absolute technical requirement with which all projects must comply.
- **Should**: This word indicates that there may be valid reasons not to treat this point of guidance as an absolute requirement, but the full implications need to be understood and the case carefully weighed before it is disregarded. ‘Should’ has been used in conjunction with technical standards that are likely to become widely implemented during the lifetime of the project but currently are still gaining widespread use.
- **May**: This word indicates that the topic deserves attention, but projects are not bound by this advice. ‘May’ has therefore been used to refer to standards that are currently still being developed.

This vocabulary is based on terminology used in Internet Engineering Task Force (IETF) documentation. Those key words are used in the remainder of this document. Within the context of the standards and guidelines for a specific programme, the authors should adapt the requirement levels specified in this document to those of their own contexts; authors should make appropriate use of these key word conventions to convey this.

IETF RFC 2119 Key words for use in RFCs to Indicate Requirement Levels
<http://www.ietf.org/>
Projects must develop a good knowledge of the collections to be digitised and the uses to be made of the digital resources created. When selecting digitisation hardware and software, projects must take into account characteristics of the originals such as format, size, condition and the importance of capturing accurately attributes such as colour.

Guidance:

TASI: Advice: Creating Digital Images
<http://www.tasi.ac.uk/advice/creating/creating.html>
Available 2005-02-15

The Digitisation Process
<http://www.ukoln.ac.uk/nof/support/help/papers/digitisation_process/>
Available 2005-02-15

2.1 Hardware

This document does not provide specific advice on the choice of digitisation equipment. Projects must demonstrate an awareness of the range of equipment available, the factors that determine its suitability for use with different types of physical object, and the ways in which it connects with other hardware such as a PC.

Projects must ensure that equipment selected generates digital objects of a quality that meets the requirements of their expected uses, within acceptable constraints of cost.

Project should seek appropriate advice before purchasing digitisation equipment or contracting digitisation services, and should carry out an accurate costing based on the specific requirements of the project.

2.2 Software

This document does not provide specific advice on the choice of software for use in digitisation. Projects must demonstrate an awareness of the
2. Preparation for digitisation

use of software in image capture and image processing, and the hardware and software requirements of individual software products.

Project **must** ensure that software provides the functionality required given the intended uses of the digital objects created, within acceptable constraints of cost, and that software is usable by the relevant project staff.

2.3 Environment

Establishing an appropriate environment for the digitisation process is important in ensuring that that process is effective in creating usable digital resources and ensuring that any damaging effect on the physical source materials is minimised.

Digitisation may be carried out in-house on specially purchased or existing equipment, or it may be delegated to an external agency. Project **must** understand the factors involved in this choice, not only in terms of the costs but also of the requirements for the handling of physical materials and the generation of digital objects.
3. Handling of originals

3.1 Appropriate movement and manipulation of original material

Preservation concerns apply both to the information object being digitised and to the surrogate digital object when it has been created. Those responsible for the project must weigh-up the risks of exposing original material to any digitisation process, especially where the items are unique, valuable or fragile, and must discuss the process with those responsible for the care of the originals.

Guidance:
<http://www.rlg.org/preserv/joint/>
Available 2005-02-15

3.2 Staff training

Projects must ensure that all staff receive proper training in the use of digitisation hardware and software and in the appropriate handling of physical materials. This ensures that the process is efficient and that any risk to the originals is minimised.

Guidance:
TASI: Advice: Creating Digital Images
<http://www.tasi.ac.uk/advice/creating/creating.html>
Available 2005-02-15
4. The digitisation process

Digitisation is the conversion of analogue materials into a digital format for use by software, and decisions made at the time of digitisation have a fundamental impact on the manageability, accessibility and viability of the resources created.

It is difficult to specify fully standards for initial data capture, as requirements change over time and different resource types may have quite different requirements. However, projects must demonstrate that they have considered the implications of the following three issues:

• the selection of materials for digitisation,
• the physical preparation of materials for digitisation,
• the digitisation process.

The JISC Image Digitisation Initiative (JIDI), the Arts and Humanities Data Service (AHDS) and the Technical Advisory Service for Images (TASI) all provide further guidance on this topic.

A variety of guidance regarding digitisation is also available in various publications. An important recent text is Anne R. Kenney and Oya Y. Rieger’s, Moving Theory into Practice: digital imaging for libraries and archives (Research Libraries Group, 2000).

Of importance also are the RLG/NPO conference papers collected together in Guidelines for Digital Imaging (National Preservation Office, 1998). In addition, the Digital Library Federation, the Council on Library and Information Resources and the Research Libraries Group have recently published some useful Guides to Quality in Visual Resource Imaging.

Guidance:

JIDI
<http://heds.herts.ac.uk/resources/papers/jidi_fs.html>
Available 2005-02-15
4. The digitisation process

AHDS: Guides to Good Practice in the Creation and Use of Digital Resources
<http://ahds.ac.uk/guides.htm>
Available 2005-02-15

TASI
<http://www.tasi.ac.uk/>
Available 2005-02-15

A Feasibility Study for the JISC Image Digitisation Initiative (JIDI)
<http://heds.herts.ac.uk/resources/papers/jidi_fs.html>
Available 2005-02-15

<http://www.rlg.org/preserv/joint/>
Available 2005-02-15

Guides to Quality in Visual Resource Imaging:
<http://www.rlg.org/visguides/>
Available 2005-02-15
5. Storage and management of the digital master material

Preservation issues **must** be considered an integral part of the digital creation process. Preservation will depend upon documenting all of the technological procedures that led to the creation of an object, and much critical information can - in many cases - be captured only at the point of creation.

Projects **must** consider the value in creating a fully documented high-quality ‘digital master’ from which all other versions (e.g. compressed versions for access via the Web) can be derived. This will help with the periodic migration of data and with the development of new products and resources.

It is important to realise that preservation is not just about choosing suitable file formats or media types. Instead, it should be seen as a fundamental management responsibility for those who own and manage digital information content, ensuring its long-term use and re-use. This depends upon a variety of factors that are outside of the digitisation process itself, e.g. things like institutional stability, continued funding and the ownership of intellectual property rights.

However, there are technical strategies that can be adopted during the digitisation process to facilitate preservation. For example, many digitisation projects have begun to adopt strategies based on the creation of metadata-rich ‘digital masters’. A brief technical overview of the ‘digital master’ strategy is described in the information paper on the digitisation process produced for the UK NOF-digitise programme by HEDS.

Guidance:

<http://www.rlg.org/preserv/joint/>
Available 2005-02-15

<http://www.dpconline.org/graphics/handbook/>
Available 2005-02-15
5. Storage and management of the digital master material

The Digitisation Process
<http://www.ukoln.ac.uk/nof/support/help/papers/digitisation_process/>
Available 2005-02-15

5.1 File formats

Open standard formats should be used when creating digital resources in order to maximise access. (Note that file formats for the delivery of digital records to users are outlined in 7.1) The use of open file formats will help with interoperability, ensuring that resources are reusable and can be created and modified by a variety of applications. It will also help to avoid dependency on a particular supplier.

However, in some cases there may be no relevant open standards or the relevant standards may be sufficiently new that conformant tools are not widely available. In some cases therefore, the use of proprietary formats may be acceptable. However, where proprietary formats are used, the project should explore a migration strategy that will enable a transition to open standards to be made in the future.

If open standards are not used, projects should justify their requirement for use of proprietary formats within their proposals for funding, paying particular attention to issues of accessibility.

Text capture and storage

Character encoding
A character encoding is an algorithm for presenting characters in digital form by mapping sequences of code numbers of characters (the integers corresponding to characters in a repertoire) into sequences of 8-bit values (bytes or octets). An application requires an indication about the character encoding used in a document in order to interpret the bytes which make up that digital object.

The character encoding used by text-based documents should be explicitly stated. For XML documents, the character encoding should usually be recorded in the encoding declaration of the XML declaration.

For XHTML documents, the XML declaration may be omitted, but the encoding must be recorded within the value of the http-equiv attribute of a meta element.

For character encoding issues in the delivery of documents, see 7.1.1.1.
5. Storage and management of the digital master material

Standards:

http://www.unicode.org/versions/Unicode4.0.0/

Available 2005-02-15

Extensible Markup Language (XML) 1.0

http://www.w3.org/TR/REC-xml/

Available 2005-02-15

XHTML 1.0 The Extensible HyperText Markup Language

http://www.w3.org/TR/xhtml1/

Available 2005-02-15

Guidance:

Jukka Korpela, A Tutorial on Character Code Issues

Available 2005-02-15

Document formats

Text based content **should** be created and managed in a structured format that is suitable for generating HTML or XHTML documents for delivery.

In most cases storing text-based content in an SGML- or XML-based form conforming to a published Document Type Definition (DTD) or XML Schema will be the most appropriate option. Projects **may** choose to store such content either in plain files or within a database of some kind. All documents **should** be validated against the appropriate DTD or XML Schema.

Projects **should** display awareness of and understand the purpose of standardised formats for the encoding of texts, such as the Text Encoding Initiative (TEI), and **should** store text-based content in such formats when appropriate. Projects **may** store text-based content as HTML 4 or XHTML 1.0 (or subsequent versions). Projects **may** store text-based content in SGML or XML formats conforming to other DTDs or Schemas, but **must** provide mappings to a recognised schema.

In some instances, projects **may** choose to store text-based content using Adobe Portable Document Format (PDF). PDF is a proprietary file format owned by Adobe that preserves the fonts, formatting, colours and graphics of the source document. PDF files are compact and can be viewed and printed with the freely available Adobe Acrobat Reader. However, as with any proprietary solution, there are dangers in its adoption and projects **should** be aware of the potential costs of this
5. Storage and management of the digital master material

approach and should explore a migration strategy that will enable a future transition to open standards to be made. (See also section 7.1.1 for considerations regarding the accessibility of PDF documents).

<table>
<thead>
<tr>
<th>Standards:</th>
</tr>
</thead>
</table>
| Extensible Markup Language (XML) 1.0
<http://www.w3.org/TR/REC-xml/>
Available 2005-02-15 |
| Text Encoding Initiative (TEI)
<http://www.tei-c.org/>
Available 2005-02-15 |
| HTML 4.01 HyperText Markup Language
<http://www.w3.org/TR/html401/>
Available 2005-02-15 |
| XHTML 1.0 The Extensible HyperText Markup Language
<http://www.w3.org/TR/xhtml1/>
Available 2005-02-15 |
| Other references:
Portable Document Format (PDF)
Available 2005-02-15 |

<table>
<thead>
<tr>
<th>Guidance:</th>
</tr>
</thead>
</table>
| AHDS Guide to Good Practice:
Creating and Documenting Electronic Texts
<http://ota.ahds.ac.uk/documents/creating/>
Available 2005-02-15 |

Still image capture and storage

Digital still images fall into two main categories: raster (or ‘bit-mapped’) images and vector (‘object-oriented’) images. Raster images take the form of a grid or matrix, with each ‘picture element’ (pixel) in the matrix having a unique location and an independent colour value that can be edited separately. Vector files provide a set of mathematical instructions that are used by a drawing program to construct an image.

The digitisation process will usually generate a raster image; vector images are usually created as outputs of drawing software.
Raster images
When creating and storing raster images, two factors need to be considered: the file format and the quality parameters. Raster images should usually be stored in the uncompressed form generated by the digitisation process without the application of any subsequent processing. Raster images must be created using one of the following formats: Tagged Image File Format (TIFF), Portable Network Graphics (PNG), Graphical Interchange Format (GIF) or JPEG Still Picture Interchange File Format (JPEG/SPIFF).

There are two primary parameters to be considered:

- **Spatial resolution**: the frequency at which samples of the original are taken by the capture device, expressed as a number of samples per inch (spi), or more commonly just as pixels per inch (ppi) in the resulting digital image.
- **Colour resolution (bit depth)**: the number of colours (or levels of brightness) available to represent different colours (or shades of grey) in the original, expressed in terms of the number of bits available to represent colour information, e.g. a colour resolution of 8 bits means 256 different colours are available.

In general photographic images should be created as TIFF images.

The selection of quality parameters required to capture a useful image of an item is determined by the size of the original, the amount of detail in the original and the intended uses of the digital image. Digitising a 35mm transparency will require a higher resolution than a 6x4 print because it is smaller and more detailed; if a required use of an image of a watercolour is the capacity to analyse fine details of brushstrokes, then that requires a higher resolution than that required to simply display the picture as a whole on a screen.

Images should be created at the highest suitable resolution and bit depth that is both affordable and practical given the intended uses of the images, and each project must identify the minimum level of quality and information density it requires.

As a guide, a resolution of 600 dots per inch (dpi) and a bit depth of 24-bit colour or 8-bit greyscale should be considered for photographic prints. A resolution of 2400 dpi should be considered for 35 mm slides to capture the increased density of information. (Source: EMII DCF)

In some cases, for example when using cheaper digital cameras, it may be appropriate to store images in JPEG/SPIFF format as an alternative to TIFF. This will result in smaller, but lower quality images. Such images may be appropriate for displaying photographs of events etc. on a Web site but it is not suggested that such cameras are used for the large-scale digitisation of content. (Source: NOF-digitise)
5. Storage and management of the digital master material

Standards:

Tagged Image File Format (TIFF)
<http://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf>
Available 2005-02-15

Joint Photographic Expert Group (JPEG)
<http://www.w3.org/Graphics/JPEG/>
Available 2005-02-15

JPEG Still Picture Interchange File Format (SPIFF)
Available 2005-02-15

Guidance:

TASI: Advice: Creating Digital Images
<http://www.tasi.ac.uk/advice/creating/creating.html>
Available 2005-02-15

Graphic non-vector images
Computer-generated images such as logos, icons and line drawings **should** normally be created as PNG or GIF images at a resolution of 72 dpi. (N.B. Images resulting from the digitisation of physical line drawings should be managed as described in the previous section.)

Standards:

Portable Network Graphics (PNG)
<http://www.w3.org/TR/PNG>
Available 2005-02-15

Vector images
Vector images consist of multiple geometric objects (lines, ellipses, polygons, and other shapes) constructed through a sequence of commands or mathematical statements to plot lines and shapes. Vector graphics **should** be created and stored using an open format such as Scalable Vector Graphics (SVG), an XML language for describing such graphics. SVG drawings can be interactive and dynamic, and are scalable to different screen display and printer resolutions.

Use of the proprietary Macromedia Flash format may also be appropriate, however projects **should** explore a migration strategy so that they can move to more open formats once they become widely deployed. In addition, the use of text within the Flash format should be avoided, in order to enable the development of multi-lingual versions.
5. Storage and management of the digital master material

Standards:

Scalable Vector Graphics (SVG)
<http://www.w3.org/TR/SVG/>
Available 2005-02-15

Other references:

Macromedia Flash
<http://www.macromedia.com/>
Available 2005-02-15

Video capture and storage

Video should usually be stored in the uncompressed form obtained from the recording device without the application of any subsequent processing. Video should be created at the highest suitable resolution, colour depth and frame rate that are both affordable and practical given its intended uses, and each project must identify the minimum level of quality it requires.

Video should be stored using the uncompressed RAW AVI format, without the use of any codec, at a frame size of 720x576 pixels, a frame rate of 25 frames per second, using 24-bit colour. PAL colour encoding should be used.

Video may be created and stored using the appropriate MPEG format (MPEG-1, MPEG-2 or MPEG-4) or the proprietary formats Microsoft WMF, ASF or Quicktime.

Standards:

Moving Pictures Experts Group (MPEG)
<http://www.csi.it/mpeg/>
Available 2005-02-15

Audio capture and storage

Audio should usually be stored in the uncompressed form obtained from the recording device without the application of any subsequent processing such as noise reduction. Audio should be created and stored as an uncompressed format such as Microsoft WAV or Apple AIFF. 24-bit stereo sound at 48/96 KHz sample rate should be used for master copies. This sampling rate is suggested by the Audio Engineering Society (AES) and the International Association of Sound and Audiovisual Archives (IASA).

Audio may be created and stored using compressed formats such as MP3, WMA, RealAudio, or Sun AU formats.
5. Storage and management of the digital master material

5.2 Media choices

Different digital storage media have different software and hardware requirements for access and different media present different storage and management challenges. The threats to continued access to digital media are two-fold:

- The physical deterioration of, or damage to, the medium itself
- Technological change resulting in the obsolescence of the hardware and software infrastructure required to access the medium

The resources generated during digitisation project will typically be stored on the hard disks of one or more file servers, and also on portable storage media. At the time of writing, the most commonly used types of portable medium are magnetic tape and optical media (CD-R and DVD).

Portables media chosen should be of good quality and purchased from reputable brands and suppliers, and new instances should always be checked for faults. Media should be handled, used and stored in accordance with their suppliers’ instructions.

Projects should consider creating copies of all their digital resources – metadata records as well as the digitised objects - on two different types of storage medium. At least one copy should be kept at a location other than the primary site to ensure that they are safe in the case of any disaster affecting the main site. All transfers to portable media should be logged. (Source: Minerva GPH, DPC)

Media should be refreshed (i.e. the data copied to a new instance of the same medium) on a regular cycle within the lifetime of the medium. Refreshment activity should be logged. (Source: Minerva GPH, DPC)

Preservation Management of Digital Materials
<http://www.dpconline.org/graphics/handbook/>
Available 2005-02-15

TASI: Advice: Using CD-R and DVD-R for Digital Preservation
<http://www.tasi.ac.uk/advice/delivering/cdr-dvdr.html>
Available 2005-02-15

5.3 Preservation strategies

There are three main technical approaches to digital preservation: technology preservation, technology emulation and data migration. The first two focus on the technology used to access the object, either maintaining the original hardware and software or using current technology to replicate the original environment. The work on “persistent archives” based on the articulation of the essential characteristics of the objects to be preserved may also be of interest.
Migration strategies focus on the maintaining the digital objects in a form that is accessible using current technology. In this scenario, objects are periodically transferred from one technical environment to another, newer one, while as far as possible maintaining the content, context, usability and functionality of the original. Such migrations may require the copying of the object from one medium or device to a new medium or device and/or the transformation of the object from one format to a new format. Some migrations may require only a relatively simple format transformation; a migration to a very different environment may involve a complex process with considerable design effort.

Projects should understand the requirements for a migration-based preservation strategy and should develop policies and guidelines to support its implementation.

The capture of metadata is a critical part of a migration-based preservation strategy (see 6.2.3). Metadata is required to support the management of the object and of the migration process, but furthermore, migration inevitably leads, at least in the longer term, to some changes in, or losses of, original functionality. Where this is significant to the interpretation of the object, users will rely on metadata about the migration process - and about the original object and its transformations - to provide some understanding of the functionality provided in the original technological environment.

Guidance:

<http://www.dpconline.org/graphics/handbook/>
Available 2005-02-15

The State of Digital Preservation: An International Perspective
<http://www.tasi.ac.uk/advice/creating/creating.html>
Available 2005-02-15
6. Metadata creation/capture

Metadata can be defined literally as “data about data,” but the term is normally understood to mean structured data about resources that can be used to help support a wide range of operations on those resources.

A resource may be anything that has identity, and a resource may be digital or non-digital. Operations might include, for example, disclosure and discovery, resource management (including rights management) and the long-term preservation of a resource. For a single resource different metadata may be required to support these different functions.

6.1 The scope of the metadata

It may be necessary to provide metadata describing several classes of resource, including

- the physical objects digitised;
- the digital objects created during the digitisation process and stored as “digital masters”;
- the digital objects derived from these “digital masters” for networked delivery to users;
- new resources created using these digital objects;
- collections of any of the above

6.2 Appropriate standards

Metadata is sometimes classified according to the functions it is intended to support. In practice, individual metadata schemas often support multiple functions and overlap the categories below.

The curatorial communities responsible for the management of different types of resources have developed their own metadata standards to support operations on those resources. The museum community has created the SPECTRUM and CDWA standards to support the management of museum objects; the archive community has developed the ISAD(G), ISAAR(CPF) and EAD standards to provide for the administration and discovery of archival records; and the library community uses the MARC family of standards to support the representation and exchange of bibliographic metadata.
6. Metadata creation/capture

Project **should** display awareness of the requirements of community-/domain-specific metadata standards.

Projects **should** ensure that the metadata schema(s) adopted is (are) fully documented. This documentation **should** include detailed cataloguing guidelines listing the metadata elements to be used and describing how those elements are to be used to describe the types of resource created and managed by the project. Such guidelines are necessary even when a standard metadata schema is used in order to explain how that schema is to be applied in the specific context of the project.

Standards:

- SPECTRUM, the UK Museum Documentation Standard, 2nd Edition Getty Research Institute, Categories for the Description of Works of Art (CDWA)
 <http://www.mda.org.uk/spectrum.htm>
 Available 2005-02-15

- International Standard for Archival Description (General) (ISAD(G)). Second Edition.
 <http://www.ica.org/biblio/isad_g_2e.pdf>
 Available 2005-02-15

- International Standard Archival Authority Record for Corporate Bodies, Persons and Families.
 Available 2005-02-15

- Encoded Archival Description (EAD)
 <http://www.loc.gov/ead/>
 Available 2005-02-15

- Machine Readable Cataloguing (MARC): MARC 21
 <http://www.loc.gov/marc/>
 Available 2005-02-15

Guidance:

- Online Archive of California Best Practice Guidelines for Digital Objects (OAC BPG DO), Version 1.0
 <http://www.cdlib.org/inside/projects/oac/bpgdo/>
 Available 2005-02-15

Descriptive metadata

Descriptive metadata is used for discovery and interpretation of the digital object.
6. Metadata creation/capture

Projects **should** show understanding of the requirements for descriptive metadata for digital objects.

To support the discovery of their resources by a wide range of other applications and services, projects **must** capture and store sufficient descriptive metadata to be able to generate a metadata description for each item using the Dublin Core Metadata Element Set (DCMES) in its simple/unqualified form. The DCMES is a very simple descriptive metadata schema, developed by a cross-disciplinary initiative and designed to support the discovery of resources from across a range of domains. It defines fifteen elements to support simple cross-domain resource discovery: Title, Creator, Subject, Description, Publisher, Contributor, Date, Type, Format, Identifier, Source, Language, Relation, Coverage and Rights.

This requirement does not mean that only simple DC metadata should be recorded for each item: rather, the ability to provide simple DC metadata is the minimum requirement to support resource discovery. In practice, that simple DC metadata will probably be a subset of a richer set of item-level metadata.

To support discovery within the cultural heritage sector, projects **should** also consider providing a metadata description for each item conforming to the DC.Culture schema.

Projects **should** show awareness of any additional requirements for descriptive metadata, and **may** need to capture and store additional descriptive metadata to meet those requirements.

Standards:

Dublin Core Metadata Element Set, Version 1.1
<http://dublincore.org/documents/dces/>
Available 2005-02-15

DC.Culture
<http://www.minervaeurope.org/DC.Culture.htm>
Available 2005-02-15

Guidance:

Using Dublin Core
<http://dublincore.org/documents/usageguide/>
Available 2005-02-15
6. Metadata creation/capture

Administrative metadata

Administrative metadata is used for managing the digital object and providing more information about its creation and any constraints governing its use. This might include:

- Technical metadata, describing technical characteristics of a digital resource
- Source metadata, describing the object from which the digital resource was produced
- Digital provenance metadata, describing the history of the operations performed on a digital object since its creation/capture
- Rights management metadata, describing copyright, use restrictions and license agreements that constrain the use of the resource.

Technical metadata includes information that can only be captured effectively as part of the digitisation process itself: for example, information about the nature of the source material, about the digitisation equipment used and its parameters (formats, compression types, etc.), and about the agents responsible for the digitisation process. It may be possible to generate some of this metadata from the digitisation software used.

There is, however, no single standard for this type of metadata. For images, a committee of the US National Information Standards Organization (NISO) has produced a draft data dictionary of technical metadata for digital still images. Projects should show understanding of the requirements for administrative metadata for digital objects.

Projects must capture and store sufficient administrative metadata for the management of their digital resources.

Standards:

<www.niso.org/standards/resources/Z39_87_trial_use.pdf>
Available 2005-02-15

Preservation metadata

A set of sixteen basic metadata elements to support preservation was published in 1998 by a Working Group on Preservation Issues of Metadata constituted by the Research Libraries Group (RLG).

The Reference Model for an Open Archival Information System (OAIS) is an attempt to provide a high-level framework for the development and comparison of digital archives. It provides both a functional
6. Metadata creation/capture

model, that outlines the operations to be undertaken by an archive, and an information model, that describes the metadata required to support those operations.

Using the OAIS model as their framework, an OCLC/RLG working group on preservation metadata has developed proposals for two components of the OAIS information model directly relevant to preservation metadata (Content Information and Preservation Description Information).

Standards:

RLG Working Group on Preservation Issues of Metadata
<http://www.rlg.org/preserv/presmeta.html>
Available 2005-02-15

Reference Model for an Open Archival Information System (OAIS)
<http://www.ccsds.org/documents/650x0b1.pdf>
Available 2005-02-15

Preservation Metadata and the OAIS Information Model: A Metadata Framework to Support the Preservation of Digital Objects
Available 2005-02-15

Guidance:

Preservation Metadata
<http://www.ukoln.ac.uk/metadata/publications/iylim-2003/>
Available 2005-02-15

Structural metadata

Structural metadata describes the logical or physical relationships between the parts of a compound object. For example, a physical book consists of a sequence of pages. The digitisation process may generate a number of separate digital resources, perhaps one image per page, but the fact that these resources form a sequence and that sequence constitutes a composite object is clearly essential to their use and interpretation.

The Metadata Encoding and Transmission Standard (METS) provides an encoding format for descriptive, administrative and structural metadata, and is designed to support both the management of digital objects and the delivery and exchange of digital objects across systems.
6. Metadata creation/capture

The IMS Content Packaging Specification describes a means of describing the structure of and organising composite learning resources.

Projects should show understanding of the requirements for structural metadata for digital resources, of the role of METS in "wrapping" metadata and digital objects, and of the role of IMS Content Packaging in the exchange of reusable learning resources.

Standards:

- Metadata Encoding and Transmission Standard (METS)
 <http://www.loc.gov/standards/mets/>
 Available 2005-02-15

- IMS Content Packaging
 <http://www.imsproject.org/content/packaging/>
 Available 2005-02-15

Collection-level description

A digital resource is created not in isolation but as part of a digital collection, and should be considered within the context of that collection and the development of the collection. Indeed, collections themselves are seen as components around which many different types of digital services might be constructed.

Collections should be described so that a user can discover important characteristics of the collection and so that collections can be integrated into the wider body of existing digital collections and into digital services operating across these collections.

Projects should display awareness of initiatives to enhance the disclosure and discovery of collections, such as programme-, community-, sector- or domain-wide, national, or international inventories of digitisation activities and of digital cultural content.

Projects should contribute metadata to such services where appropriate.

Projects should provide collection-level descriptions using an appropriate metadata schema. Projects should display awareness of the Research Support Libraries Programme (RSLP) Collection Description schema, the collection-level description schema defined by Minerva, and the emerging Dublin Core Collection Description Application Profile.

Standards:

- RSLP Collection Description
 <http://www.ukoln.ac.uk/metadata/rslp/>
 Available 2005-02-15
6. Metadata creation/capture

Terminology standards

Effective transmission of the information conveyed in metadata records requires more than a shared understanding of the metadata schema in use and its constituent metadata elements. It also depends on establishing shared understanding of the terms used as values of those metadata elements, either by the adoption of common terminologies or by adopting different terminologies where the relationships between terms are clearly defined.

Projects should use recognised multilingual terminological sources to provide values for metadata elements where possible. Only if no standard terminology is available, local terminologies may be considered. Where local terminologies are deployed, information about the terminology and its constituent terms and their meaning must be made publicly available.

The use of a terminology in metadata records, either standard or project-specific, must be indicated unambiguously in the metadata records.

Collection-level metadata records should make use of the terminologies recommended for use with the Minerva collection-level description schema.
6. Metadata creation/capture

Standards:

Minerva: Deliverable D3.2: Inventories, discovery of digitised content & multilingual issues: Feasibility survey of the common platform

<http://www.minervaeurope.org/intranet/reports/D3_2.pdf>

Available 2005-02-15
7. Publication

It is expected that end-user access to resources will be primarily through the use of Internet protocols. Preparation for publication requires the processing of the “digital master” to generate digital objects suitable for use in the Internet context, typically by reducing quality in order to generate files of sizes suitable for transfer over networks.

Also, video and audio may be made available either for download or for streaming, which means that instead the entire file being transferred before playback can start, a small buffer space is created on the user’s computer, and data is transmitted into the buffer. As soon as the buffer is full, the streaming file starts to play, while more data continues to be transmitted.

Consideration must be given to the fact that variations exist in

- the types of hardware device and client software employed by users
- the levels of bandwidth restriction within which users operate

To maximise potential audience reach, projects should make resources available in alternative sizes or formats or at alternative resolutions/bit-rates. Project should periodically review the criteria on which decisions about delivery formats and parameters are based.

Note: The following recommendations on delivery formats should be read in conjunction with the requirements for file formats for storage of resources (see 5.1).

7.1 Processing for delivery

Delivery of text

Character encoding

The character encoding used in text-based documents should be transmitted in the HTTP header, and also recorded within documents as appropriate (see 5.1.1.1).

Note that some XML-based protocols may mandate the use of a specified character encoding, e.g. the OAI Protocol for Metadata Harvesting (see 8.1) requires the use of the UTF-8 character encoding.
7. Publication

Guidance:

Jukka Korpela, A Tutorial on Character Code Issues
Available 2005-02-15

Document formats

Text-based content **must** be delivered as XHTML 1.0 or HTML 4 (or subsequent versions), though the use of SGML or XML formats conforming to other DTDs or Schemas **may** sometimes be appropriate (Source: NOF-digitise).

In some cases, delivery in proprietary formats such as PDF, RTF or Microsoft Word **may** be appropriate as a supplementary format to XHTML/HTML, but projects **must** ensure that accessibility issues have been addressed (Source: NOF-digitise).

Standards:

HTML 4.01 HyperText Markup Language
<http://www.w3.org/TR/html401/>
Available 2005-02-15

XHTML 1.0 The Extensible HyperText Markup Language
<http://www.w3.org/TR/xhtml1/>
Available 2005-02-15

Other references:

Portable Document Format (PDF)
<http://www.adobe.com/productsacrobat/adobepdf.html>
Available 2005-02-15

Delivery of still images

Photographic images

Images **must** be provided on the Web as JPEG/SPIFF format. Consideration **should** be given to providing various sizes of image to offer readability appropriate to the context of use. IPR issues may also contribute to decisions about the size and quality of image provided.

Thumbnail images **should** be provided at a resolution of 72 dpi, using a bit depth of 24-bit colour or 8-bit greyscale, and using a maximum of 100-200 pixels for the longest dimension (Source: EMII-DCF).

Images for full-screen presentation **should** be provided at a resolution of 150 dpi, using a bit depth of 24-bit colour or 8-bit greyscale and using a maximum of 600 pixels for the longest dimension. This resolution remains lower than that required for high quality print reproduction (Source: EMII-DCF).
7. Publication

Graphic non-vector images
Images should be delivered on the Web using Graphical Interchange Format (GIF) or Portable Network Graphics (PNG) format.

Graphic vector images
Images should be delivered on the Web using the Scalable Vector Graphics (SVG) formats.

Delivery of video

Consideration should be given to the possibility that users’ access to video may be constrained by bandwidth restrictions and it may be appropriate to provide a range of files or streams of different quality.

Downloading
Video for download should be delivered on the Web using the MPEG-1 format or the proprietary Microsoft Audio Video Interleave (AVI), Windows Media Video (WMV) or Apple Quicktime formats. (Source: NOF-Digi, EMII-DCF)

Moving Pictures Experts Group (MPEG)
<http://www.cse.it/mpeg/>
Available 2005-02-15

Streaming
Video for streaming should be delivered on the Web using Microsoft Advanced Streaming Format (ASF), Windows Media Video (WMV) or Apple Quicktime formats (Source: NOF-Digi, EMII-DCF).

Delivery of audio

Consideration should be given to the possibility that users’ access to audio may be constrained by bandwidth restrictions and it may be appropriate to provide a range of files or streams of different quality.

Downloading
Audio should be delivered on the Web in a compressed form, using the MPEG Layer 3 (MP3) format or the proprietary RealAudio (RA) or Microsoft Windows Media Audio (WMA) formats. A bitrate of 256 Kbps should be used where near CD quality sound is required; a bitrate of 160 Kbps provides good quality (Source: EMII-DCF).

Audio may be delivered in uncompressed forms using the Microsoft WAV/AIFF or Sun AU formats.

Streaming
Audio for streaming should be delivered on the Web using the MPEG Layer 3 (MP3) format or the proprietary RealAudio (RA) or Microsoft Windows Media Audio (WMA) formats.
7. Publication

Identification

Digitised resources should be unambiguously identified and uniquely addressable directly from a user’s Web browser. It is important, for example, that the end user has the capability to directly and reliably cite an individual resource, rather than having to link to the Web site of a whole project. Projects should make use of the Uniform Resource Identifier (URI) for this purpose, and should ensure that the URI is reasonably persistent. Such URIs should not embed information about file format, server technology, organisational structure of the provider service or any other information that is likely to change within the lifetime of the resource. (Source: NOF-digitise, JISC IE)

Where appropriate, projects may wish to consider the use of Digital Object Identifiers or of persistent identifiers based on another identifier scheme.

Projects may also wish to ensure that logical sets within the resources they are providing are uniquely and persistently addressable.

Standards:

Uniform Resource Identifiers (URI)
<http://www.w3.org/Addressing/>
Available 2005-02-15

Digital Object Identifier (DOI)
<http://www.doi.org/>
Available 2005-02-15

7.2 3D and virtual reality issues

Projects making use of three-dimensional virtual reality (VR) ‘fly throughs’ and models must consider the needs of users accessing their site using typical computers and modem connections.

These models are typically used in the reconstruction of buildings and other structures or in simulating whole areas of a landscape. Traditionally, models have been constructed and displayed using powerful computer workstations, and this continues to be the case for the most detailed. For projects that are required to deliver the results of their work to a large audience via the Internet, such highly detailed models may be unhelpful. Nevertheless, there is scope for usefully incorporating less complex models into the Web sites made available to users.

In generating these models, projects must be aware that the majority of their users for the foreseeable future will continue to access the Internet using a 56k modem or a shared connection, rather than any
higher bandwidth technology. Similarly, the specifications of the computer being used by typical visitors are likely to be significantly lower than those of the machines on which projects generate and test any such models. Projects must therefore consider the usability of their models in such conditions, and must test them using typical modern connections and home, school, or library computer systems with a variety of typical operating systems and browsers.

Standards in this area continue to evolve, but projects should produce VR models compatible with the X3D specification.

Apple’s QuickTime VR (QTVR) is not a true 3D image format, but does offer some useful functionality. Projects which do not require the full functionality of X3D may wish to consider using QTVR instead.

Standards:

- Web3D Consortium
 - http://www.web3d.org/x3d/overview.html
 - Available 2005-02-15

- X3D
 - http://www.web3d.org/x3d.html
 - Available 2005-02-15

- QuickTime VR
 - Available 2005-02-15

Guidance:

- Archaeology Data Service VR Guide to Good Practice
 - http://ads.ahds.ac.uk/project/goodguides/g2gp.html
 - Available 2005-02-15

7.3 Geographic information systems

Much cultural content has a grounding in place, and this offers one powerful means by which content might be grouped or retrieved. Geographic Information Systems (GIS) are software applications specifically designed to store, manipulate and retrieve place-based information, and they are increasingly widely deployed within the cultural heritage sector.

It is not necessary, however, for every project that wishes to store place-based information, or to include a location map on their web site, to install and maintain a GIS. Place-based information may be stored (although not necessarily fully manipulated or re-used) within a tradi-
7. Publication

tional database, and simple images of location maps etc. may be created by various means. Projects **must** ensure that they can support a GIS implementation in the future, even if this is not planned within the project. The OAI-PMH harvesting of metadata (using a schema such as DC.Culture) can then allow the presentation of data through an external GIS system (see Section 8.1).

For those projects that do require rich interaction with place-based information, such as that potentially offered by a GIS, the following **must** be borne in mind:

- projects seeking to employ a GIS **must** obtain appropriate permissions for use of any map data from third parties, ensuring that licences extend to delivering services to their defined audiences via their selected delivery channels
- projects **must** ensure that data sets combined for the purposes of delivering their service are of similar scale and resolution, and appropriate for being used together in this manner
- commercial GIS products selected for use **should** comply with emerging industry standards from the Open GIS Consortium
- projects **must** make use of and declare use of an appropriate standard co-ordinate reference system when recording spatial data
- projects **must** make use of and declare use of appropriate national standards for the recording of street addresses.

Standards:

OpenGIS Consortium
<http://www.opengeospatial.org/>
Available 2005-02-15

Guidance:

Archaeology Data Service GIS Guide to Good Practice
<http://ads.ahds.ac.uk/project/goodguides/gis/>
Available 2005-02-15

7.4 Web sites

Project resources **must** be accessible using a Web browser. This will normally be achieved using HTML or XHTML and the HTTP 1.1 protocol. If other protocols are used (e.g. Z39.50) gateways **must** be available to provide access by a Web browser.

Projects **should** seek to provide maximum availability of their project Web site. Significant periods of unavailability **should** be accounted for to the funding programme.
7. Publication

Standards:

Hypertext Transfer Protocol, HTTP/1.1
<http://www.w3.org/Protocols/HTTP/>
Available 2005-02-15

Accessibility

Projects must be accessible by a variety of browsers, hardware systems, automated programs and end-users.

Web sites must be accessible to a wide range of browsers and hardware devices (e.g. Personal Digital Assistants - PDAs - as well as PCs). Web sites must be usable by browsers that support W3C recommendations such as HTML/XHTML, Cascading Style Sheets (CSS) and the Document Object Model (DOM). Projects that make use of proprietary file formats and browser plug-in technologies must ensure that their content is still usable on browsers that do not have the plug-ins. As a result, the use of technologies such as Javascript and Macromedia Flash in navigation of the site must be carefully considered.

The appearance of a Web site should be controlled by use of style sheets in line with W3C architecture and accessibility recommendations. The latest version of Cascading Style Sheets (CSS) recommended by W3C (currently CSS 2) should be used, although, due to incomplete support by browsers, not all features defined in CSS 2 may be usable.

Projects must implement W3C Web Accessibility Initiative (WAI) recommendations and so ensure a high degree of accessibility for people with disabilities. Projects must achieve WAI level A conformance; projects should aim to achieve WAI level AA conformance.

Standards:

Cascading Style Sheets (CSS), Level 2
<http://www.w3.org/TR/REC-CSS2/>
Available 2005-02-15

Web Content Accessibility Guidelines (WCAG) 1.0
<http://www.w3.org/TR/WCAG10/>
Available 2005-02-15

Guidance:

Web Accessibility Initiative (WAI)
<http://www.w3.org/WAI/>
Available 2005-02-15
7. Publication

RNIB: Accessible Web Design
<http://www.rnib.org.uk/digital/hints.htm>
Available 2005-02-15

Watchfire Bobby Online Service
<http://bobby.watchfire.com/>
Available 2005-02-15

Jakob Nielsen, useit.com
<http://www.useit.com/>
Available 2005-02-15

Security

The machines used to deliver projects must be operated in as secure a manner as possible. The advice in operating system manuals concerning security must be followed. All known security patches must be applied.

Machines should be configured to run only the minimum number of network services. Machines should be placed behind a firewall if possible, with access to the Internet only on those ports that are required for the project being delivered.

Projects should demonstrate awareness of the codes of practice provided by ISO/IEC 17799:2000. The management and use of any personal information must conform to relevant national legislation.

Where sensitive information is being passed from a client to a server across the network, projects must use Secure Sockets Layer (SSL) to encrypt the data. This includes the transfer of usernames and passwords, credit card details and other personal information. Note that the use of SSL also provides the end-user with an increased level of confidence in the authenticity of the service.

Standards:

Secure Sockets Layer (SSL) 3.0
<http://wp.netscape.com/eng/ssl3/>
Available 2005-02-15

Guidance:

Introduction to Secure Socket Layer (SSL)
Available 2005-02-15
7. Publication

Authenticity

Project specific domain names *should* be registered in the Domain Name System (DNS). The domain name forms part of the project ‘branding’ and will help end-users identify the authenticity of the content being delivered. Domain names *should* therefore be clearly branded with either the name of the project or the organisation delivering the project.

In some situations it may be appropriate to secure the network connection between the client and the server using Secure Sockets Layer (SSL) to give end-users increased confidence that they are exchanging information with the correct project Web site.

Museums providing Web sites *should* consider registering a “.museum” top-level domain name in order to improve disclosure of their services and to indicate that their sites are associated with genuine museums.

Guidance:

Domain Names System (DNS) Resources Directory
<http://www.dns.net/dnsrd/>
Available 2005-02-15

Dot Museum
<http://about.museum/>
Available 2005-02-15

User authentication

Some projects *may* wish to limit access to parts of their resources (for example to very high-resolution images or maps, etc.) to authenticated users only. User authentication is an important tool for ensuring that only legitimate users can access the project’s online resources.

If projects choose to implement user authentication for selected materials it *should* be based on a username and password combination. In the case of Web-based projects, HTTP Basic Authentication *must* be used to pass the username/password combination from the browser to the server.

In some cases IP-based authentication (comparing the IP address of the client against a list of known IP addresses) *may* be an appropriate alternative to usernames and passwords. However, the use of this authentication method is strongly discouraged since the growth in the use of dynamic IP addressing by many Internet Service Providers will make it very difficult to manage a list of approved IP addresses. In addition support for mobile users and users behind firewalls will also make IP authentication difficult to manage.
Projects may choose to make use of third party authentication services to manage usernames and passwords on their behalf, if appropriate.

Standards:

Hypertext Transfer Protocol, HTTP/1.1

<http://www.w3.org/Protocols/HTTP/>
Available 2005-02-15

Performance indicators

Performance indicators can be used to provide objective measures of the usage of a Web service and provide some indication of the impact of the digitisation project. The most popular performance indicator makes use of Web server log files. Analysis of server log files can provide valuable information on the growth of a service and usage patterns, although reports need to be interpreted carefully.

Projects must maintain statistics about the usage of Web sites and should use them appropriately to analyse the usage of the digitised resources.

Further guidance in this area will be developed.
8. Disclosure of resources

The collections developed by a digitisation project form part of a larger corpus of material. To support the discovery of resources within that corpus, for each collection, projects must consider exposing metadata about their resources so that it can be used by other applications and services, using one or more of the protocols or interfaces described in the following sub-sections.

The precise requirements in terms of what metadata should be provided and how that metadata should be exposed will depend on the nature of the resources created and the applications and services with which that metadata is shared.

Projects should expose one or more collection-level metadata records describing their collections as units. Projects may expose item-level metadata records describing individual digital resources within their collection(s).

Both collection-level and item-level metadata records should include a statement of the conditions and terms of use of the resource.

In order to facilitate potential exchange and interoperability between services, projects should be able to provide item level descriptions in the form of simple, unqualified Dublin Core metadata records and may provide item-level descriptions conforming to the DC.Culture schema (See 6.2.1).

Where items are “learning resources” or resources of value to the learning and teaching communities, projects should also consider providing descriptions in the form of IEEE Learning Object Metadata.

Projects should also display awareness of any additional requirements to provide metadata imposed by their operating context (e.g. national government metadata standards).

Projects should maintain awareness of any rights issues affecting their metadata records.
8. Disclosure of resources

Standards:

Dublin Core Metadata Element Set, Version 1.1
<http://dublincore.org/documents/dces/>
Available 2005-02-15

DC.Culture
<http://www.minervaeurope.org/DC.Culture.htm>
Available 2005-02-15

IEEE Learning Object Metadata
<http://ltsc.ieee.org/wg12/>
Available 2005-02-15

8.1 Metadata harvesting

Projects **should** demonstrate awareness of the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) as a means of making their metadata available to service providers.

Projects **may** consider making their metadata available for harvesting by setting up OAI compliant metadata repositories. Projects that do establish such repositories **should** consider inclusion of a statement of the rights held in their metadata to ensure they retain ownership rights in their metadata.

Standards:

Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
<http://www.openarchives.org/>
Available 2005-02-15

Guidance:

OAI FAQs
<http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/faq/oai/>
Available 2005-02-15

8.2 Distributed searching

Projects **may** need to display awareness of Z39.50, a network protocol that allows searching of (usually remote) heterogeneous databases and retrieval of data, via one user interface. Z39.50 is most often used for retrieving bibliographic records, although there are also some non-bibliographic implementations. Projects that do use Z39.50 **must** display awareness of the Bath Profile and its relevance to cross-domain interoperability.
Projects may also need to demonstrate awareness of the Search/Retrieve Web Service (SRW/SRU) protocol, which builds on Z39.50 semantics to deliver similar functionality using Web Service technologies.

Standards:

Z39.50 Maintenance Agency
[http://www.loc.gov/z3950/agency/]
Available 2005-02-15

Bath Profile
[http://www.nlc-bnc.ca/bath/tp-bath2-e.htm]
Available 2005-02-15

SRW: Search/Retrieve Web Service
[http://lcweb.loc.gov/z3950/agency/zing/srw/]
Available 2005-02-15

Guidance:

Z39.50 for All
[http://www.ariadne.ac.uk/issue21/z3950/]
Available 2005-02-15

8.3 Alerting

Projects may need to demonstrate awareness of the RDF (or Rich) Site Summary (RSS) family of specifications. RSS provides a mechanism for sharing descriptive metadata, typically in the form of a list of items, each containing a brief textual description along with a link to the originating source for expansion.

Standards:

RDF Site Summary (RSS) 1.0
[http://purl.org/rss/1.0/spec]
Available 2005-02-15

RSS 2.0
[http://blogs.law.harvard.edu/tech/rss]
Available 2005-02-15

Guidance:

Syndicated content: it's more than just some file formats
[http://www.ariadne.ac.uk/issue35/miller/]
Available 2005-02-15
8. Disclosure of resources

8.4 Web services

Projects **should** demonstrate awareness of the Web Services family of specifications, especially SOAP version 1.2 and the Web Services Description Language (WSDL).

For network services not covered by the specific protocols discussed above, consideration **should** be given to the use of SOAP, though use of the REST architectural style through HTTP 1.1 GET or POST requests to return XML documents **may** be appropriate.

Projects **may** also be required to show awareness of the Universal Description, Discovery & Integration (UDDI) specification

Standards:

SOAP Version 1.2 Part 1: Messaging Framework
<http://www.w3.org/TR/soap12-part1/>
Available 2005-02-15

Web Services Description Language (WSDL) 1.1
<http://www.w3.org/TR/wsd1>
Available 2005-02-15

Hypertext Transfer Protocol, HTTP/1.1
<http://www.w3.org/Protocols/HTTP/>
Available 2005-02-15

Guidance:

SOAP Version 1.2 Part 0: Primer
<http://www.w3.org/TR/soap12-part0/>
Available 2005-02-15

8.5 RDF and Web ontologies

Projects **may** wish to take advantage of the capacities to share and reuse data on the Web that are provided by the Resource Description Framework (RDF) family of specifications. RDF provides a standard way of expressing simple descriptions of resources. At the time of writing, it is not possible to specify standards for query interfaces to RDF databases, but further guidance **may** be provided in the future.

Projects **may** wish to make use of Web-based ontologies created using the Web Ontology Language (OWL). OWL builds on RDF and RDF Schema to add a richer vocabulary to describe properties and classes to facilitate the creation of machine-processable definitions of basic concepts and the relationships among them.
Projects may wish to explore the potential for semantic interoperability offered by established ontologies such as the CIDOC Conceptual Reference Model (CRM) or the ABC Ontology/Model developed within the Harmony Project.

The CRM provides a common and extensible semantic framework that any cultural heritage information can be mapped to, and can provide a model for mediating between different sources of information. The ABC Ontology is a top-level ontology to facilitate interoperability between metadata schemas within the digital library domain.

<table>
<thead>
<tr>
<th>Standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Description Framework (RDF)</td>
</tr>
<tr>
<td>http://www.w3.org/RDF/ Available 2005-02-15</td>
</tr>
<tr>
<td>Web Ontology Language (OWL)</td>
</tr>
<tr>
<td>CIDOC Conceptual Reference Model (CRM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guidance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDF Primer</td>
</tr>
<tr>
<td>http://www.w3.org/TR/rdf-primer/ Available 2005-02-15</td>
</tr>
<tr>
<td>OWL Web Ontology Language Overview</td>
</tr>
<tr>
<td>http://www.w3.org/TR/owl-features/ Available 2005-02-15</td>
</tr>
<tr>
<td>The ABC Ontology and Model</td>
</tr>
<tr>
<td>http://jodi.ecs.soton.ac.uk/Articles/v02/i02/Lagoze/ Available 2005-02-15</td>
</tr>
</tbody>
</table>
9. Re-use and re-purposing

Users will want to repackage and re-purpose material that has been developed by digitisation projects. In order to facilitate this re-use the implementation of standards will be important.

9.1 Learning resource creation

Projects should consider the potential re-use of the resources they create, and recognise that end users or third parties may wish to extract elements of a given resource and repackage them with parts of other resources from their own collections and from other sources.

An important area in which this is likely to happen is the educational sector. In the global educational community, a number of initiatives are underway to create tools for managing educational resources. Some of this effort is concentrating upon the description of content such as that created by digitisation programmes.

Projects that develop learning resources must demonstrate awareness of the IEEE Learning Object Metadata (LOM) standard and should consider providing LOM descriptions of their learning resources (See 8).

Projects should track the work of the IMS consortium in developing specifications to support interoperability amongst learning technology systems. Projects that develop learning resources should consider the use of IMS Content Packaging to facilitate access to those resources by users of Virtual Learning Environment systems.

Standards:

IEEE Learning Object Metadata
<http://ltsc.ieee.org/wg12/>
Available 2005-02-15

IMS Global Learning Consortium, Inc.
<http://www.imsproject.org/>
Available 2005-02-15
9. Re-use and re-purposing

IMS Content Packaging.
<http://www.imsproject.org/content/packaging/>
Available 2005-02-15
10. Intellectual property rights and copyright

Projects must respect intellectual property rights held in the materials they work with, including:

- the rights of the owners of the source materials that are digitised;
- the rights of the owners of the digital resources;
- the rights or permissions granted to a service provider to make the digital resources available;
- the rights or permissions granted to the users of the digital resources.

Projects must also respect any rights arising from the particular terms and conditions of any digitisation programme within which they are operating.

Care is particularly advisable in the circumstances below:

Published material. Publishers are unlikely to give permission to digitise in-copyright material unless this is of some advantage to them. Older material may be out of copyright but the project is responsible for confirming this.

In-house productions. The rights in any work undertaken by an institution’s staff as part of their normal duties remains the property of that institution. In some academic institutions these rights may not have been asserted, and authors may have assigned them to external publishers. Unpaid volunteers retain the copyright of their work unless they sign away their rights.

Institutions commissioning work. This work, for example photography, will normally have secured reproduction rights, but this may not have extended to digitisation unless specifically stated in the agreement. Projects will only have copyright on digitised material if this permission is secured.

Gifts, bequests and loans. These may have particular conditions attached to them that affect their availability for digitisation.
10. Intellectual property rights and copyright

10.1 Identifying, recording and managing intellectual property rights

In order to manage rights held in cultural resources, projects must first identify and record what rights exist in the materials.

Where necessary projects must negotiate with rights holders to obtain permission to use materials.

Projects must record the permissions granted in licences, which specify the nature and scope of the content, the ways in which it can be used, the geographical extent of the rights, the duration of the licence and, where appropriate, a fee.

Projects must monitor licencing arrangements and ensure that licences are re-negotiated as required.

Guidance:

Copyright and the Networked Environment Issue Paper from the Networked Services Policy Taskgroup
<http://www.ukoln.ac.uk/public/earl/issuepapers/copyright.html>
Available 2005-02-15

Creating Digital Resources for the Visual Arts: Standards and Good Practice
<http://vads.ahds.ac.uk/guides/creating_guide/contents.html>
Available 2005-02-15

JISC Management Briefing Paper on Copyright
<http://www.jisclegal.ac.uk/publications/copyrightcoppenheim.htm>
Available 2005-02-15

UK Intellectual Property
<http://www.intellectual-property.gov.uk>
Available 2005-02-15

World Intellectual Property Organization
<http://www.wipo.org/>
Available 2005-02-15

10.2 Safeguarding intellectual property rights

Having identified property rights and negotiated licences, projects must ensure that their rights and the rights of other parties are protected, by taking steps to ensure that there is no unauthorised use of materials.
In the network environment, every transaction that involves intellectual property is by its nature a rights transaction. The expression of these ‘Terms of Availability’ or ‘Business Rules’ is dependent on ‘rights metadata’ – data which identifies unambiguously and securely the intellectual property itself, the specific rights which are being granted (for example to read, to print, to copy, to modify) and the users or potential users.

Projects should maintain data about the rights that they hold and acquire in an internally consistent form, so that they can be shared in a standard format.

The type of information required includes:

- the identification of the resource itself
- the name of the person or organisation granting the rights
- the precise right or rights that are being granted (including, for example, whether modification is permitted) – and any specific exclusions
- the period of time for which rights are granted
- the user group or groups permitted to use the resource
- any obligations (including but not limited to financial obligations) that users of the resource may incur.

Creative Commons

The Creative Commons initiative has released a set of copyright licenses that are free for public use, and enable people to share their works and either to dedicate their creative works to the public domain or to retain their copyright while licensing them as free for certain uses, on certain conditions.

Projects may wish to assign a Creative Commons licence to their resources.

Standards:

Creative Commons
<http://www.creativecommons.org/>
Available 2005-02-15

E-commerce

It is common for public sector content creation programmes to specify that content created must be made available free to users at the point of access, at least for educational purposes. In some cases programmes also encourage or require projects to generate revenue from the materials created.
10. Intellectual property rights and copyright

Projects **must** follow programme requirements regarding access to and use of resources created.

Projects **must** ensure that adequate protection is given to all intellectual property rights

Watermarking and fingerprinting

Projects **should** give consideration to watermarking and fingerprinting the digital material they produce.

Watermarking is the embedding of a permanent mark within a file that can subsequently be used to prove image origination or image copyright. This is normally achieved by integrating the watermark with the image data in such a way that it is virtually impossible to remove. Watermarks can be visible, invisible or a combination of both. In all cases the watermark is introduced in such a way that there is minimum distortion of the original image. Invisible watermarks **must** be able to withstand the image being cropped, rotated, compressed or transformed.

As well as watermarking images before they are distributed, images can be fingerprinted dynamically at delivery time i.e. as the image is downloaded from a Web site. When this is done, other information such as username, date, time, IP address etc. can be encoded as part of the watermark. This makes each instance of download unique and traceable through a transaction database enabling tracking of who is downloading images. Similar techniques can be used in audio and video media.

Guidance:

Purloining and Pilfering, Web Developers Virtual Library

<http://www.wdvl.com/Authoring/Graphics/Theft/>

Available 2005-02-15
11. Summary

This document has sought to provide a core set of guidelines, rather than to attempt to reflect the different requirements of many different programmes and projects. The implementers of digitisation programmes and projects will need to adapt these guidelines to the specific contexts in which they are operating, to select, to customise and to supplement as required. However, it is hoped that as a core, they can provide a starting point that is useful in many different contexts.

11.1 Maintenance

These Guidelines will be maintained and developed by the MINERVA project. All comments and suggestions for changes and updates should be submitted to the MINERVA Project.

Guidance:

MINERVA Project Website
<http://www.minervaeurope.org/>
<minerva2@beniculturali.it>
Available 2005-02-15